Orpheus API Reference
Admet Prediction Query
POST Admet Prediction Query
https://api.wisecube.ai/orpheus/graphql
This API retrieves prediction using ADMET models and sagemaker.
1. Model: LogS
- Category: Basic physicochemical property
- Description: The log of aqueous solubility value
- Method: Random Forests
- Accuracy: 0.860
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "logS",
"smiles": [
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"logS\",\"smiles\":[\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": -3.9198139,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": -4.642688,
"smiles": "C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": -3.6882942,
"smiles": "O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "logS"
}
}
}
2. Model: LogD7.4
- Category: Basic physicochemical property
- Description: The log of the n-octanol/water distribution coefficients at pH=7.4
- Method: Random Forests
- Accuracy: 0.877
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "LogD7",
"smiles": [
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"LogD7\",\"smiles\":[\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 1.9834658,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 0.48287967,
"smiles": "C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 1.3930833,
"smiles": "O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "LogD7"
}
}
}
3. Model: Caco2
- Category: Absorption
- Description: Caco-2 cell permeability
- Method: Random Forests
- Accuracy: 0.845
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "Caco2",
"smiles": [
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"c1coc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"Caco2\",\"smiles\":[\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"c1coc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": -5.0087986,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": -5.0954404,
"smiles": "C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": -5.1016064,
"smiles": "c1coc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "Caco2"
}
}
}
4. Model: PGPi
- Category: Absorption
- Description: The inhibitor of P-glycoprotein
- Method: SVM
- Accuracy: 0.848
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "PGPi",
"smiles": [
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"PGPi\",\"smiles\":[\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.8844528,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 0.62586796,
"smiles": "c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4"
}
],
"modelName": "PGPi"
}
}
}
5. Model: PGPs
- Category: Absorption
- Description: The substrate of P-glycoprotein
- Method: SVM
- Accuracy: 0.824
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "PGPs",
"smiles": [
"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"PGPs\",\"smiles\":[\"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.5,
"smiles": "C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 0.5,
"smiles": "c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4"
}
],
"modelName": "PGPs"
}
}
}
6. Model: HIA
- Category: Absorption
- Description: The human intestinal absorption
- Method: Random Forests
- Accuracy: 0.782
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "HIA",
"smiles": [
"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4",
"c1coc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"HIA\",\"smiles\":[\"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4\",\"c1coc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.478,
"smiles": "C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 0.658,
"smiles": "c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4"
},
{
"predict": 0.464,
"smiles": "c1coc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "HIA"
}
}
}
7. Model: F (20%)
- Category: Absorption
- Description: The human oral bioavailability (20%)
- Method: Random Forests
- Accuracy: 0.689
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "F20",
"smiles": [
"c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4",
"c1coc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"F20\",\"smiles\":[\"c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4\",\"c1coc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.538,
"smiles": "c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4"
},
{
"predict": 0.574,
"smiles": "c1coc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "F20"
}
}
}
8. Model: F (30%)
- Category: Absorption
- Description: The human oral bioavailability (30%)
- Method: Random Forests
- Accuracy: 0.669
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "F30",
"smiles": [
"c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4",
"c1coc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"F30\",\"smiles\":[\"c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4\",\"c1coc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.534,
"smiles": "c1cccc(c12)[nH]c(c2)C(=O)NCCCNC(=O)c3ccc(cc3)-c4ccccc4"
},
{
"predict": 0.35,
"smiles": "c1coc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "F30"
}
}
}
9. Model: PPB
- Category: Distribution
- Description: The plasma protein binding
- Method: Random Forests
- Accuracy: 0.691
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "PPB",
"smiles": [
"CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO",
"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"PPB\",\"smiles\":[\"CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO\",\"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 86.35817,
"smiles": "CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO"
},
{
"predict": 90.41538,
"smiles": "C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "PPB"
}
}
}
10. Model: VD
- Category: Distribution
- Description: The volume of distribution
- Method: Random Forests
- Accuracy: 0.912
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "VD",
"smiles": [
"CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO",
"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"VD\",\"smiles\":[\"CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO\",\"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": -0.16493928,
"smiles": "CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO"
},
{
"predict": 0.10914946,
"smiles": "C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "VD"
}
}
}
11. Model: BBB
- Category: Distribution
- Description: The blood-brain barrier
- Method: SVM
- Accuracy: 0.926
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "BBB",
"smiles": [
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"BBB\",\"smiles\":[\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.9857907,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 0.95660263,
"smiles": "C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "BBB"
}
}
}
12. Model: CYPIA2i
- Category: Metabolism
- Description: CYP 1A2-Inhibitor
- Method: SVM
- Accuracy: 0.849
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CYPIA2i",
"smiles": [
"CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO",
"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CYPIA2i\",\"smiles\":[\"CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO\",\"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.15794268,
"smiles": "CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO"
},
{
"predict": 0.37188825,
"smiles": "C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 0.471529,
"smiles": "O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "CYPIA2i"
}
}
}
13. Model: CYPIA2s
- Category: Metabolism
- Description: CYP 1A2-substrate
- Method: Random Forests
- Accuracy: 0.702
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CYPIA2s",
"smiles": [
"CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO",
"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CYPIA2s\",\"smiles\":[\"CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO\",\"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.477,
"smiles": "CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO"
},
{
"predict": 0.552,
"smiles": "C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 0.573,
"smiles": "O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "CYPIA2s"
}
}
}
14. Model: CYP3A4i
- Category: Metabolism
- Description: CYP 3A4-Inhibitor
- Method: SVM
- Accuracy: 0.817
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CYP3A4i",
"smiles": [
"CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO",
"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CYP3A4i\",\"smiles\":[\"CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO\",\"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.58575815,
"smiles": "CN1CCOc(c12)cc(c(Br)c2)NC(=O)C(=O)NCc(c3)ccc(c34)[N+](C)CC(C4)CO"
},
{
"predict": 0.4695666,
"smiles": "C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 0.8644264,
"smiles": "O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "CYP3A4i"
}
}
}
15. Model: CYP3A4s
- Category: Metabolism
- Description: CYP 3A4-Substrate
- Method: Random Forests
- Accuracy: 0.757
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CYP3A4s",
"smiles": [
"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CYP3A4s\",\"smiles\":[\"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.652,
"smiles": "C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 0.728,
"smiles": "O1COc(c12)cc(Cl)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "CYP3A4s"
}
}
}
16. Model: CYP2C9i
- Category: Metabolism
- Description: CYP 2C9-Inhibitor
- Method: SVM
- Accuracy: 0.837
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CYP2C9i",
"smiles": [
"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CYP2C9i\",\"smiles\":[\"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.37629077,
"smiles": "C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 0.4176257,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
}
],
"modelName": "CYP2C9i"
}
}
}
17. Model: CYP2C9s
- Category: Metabolism
- Description: CYP 2C9-Substrate
- Method: Random Forests
- Accuracy: 0.728
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CYP2C9s",
"smiles": [
"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CYP2C9s\",\"smiles\":[\"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.29466668,
"smiles": "C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 0.48875,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
}
],
"modelName": "CYP2C9s"
}
}
}
18. Model: CYP2CI9i
- Category: Metabolism
- Description: CYP 2C19-Inhibitor
- Method: SVM
- Accuracy: 0.822
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CYP2CI9i",
"smiles": [
"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CYP2CI9i\",\"smiles\":[\"C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.5828041,
"smiles": "C1CCc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 0.5767354,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
}
],
"modelName": "CYP2CI9i"
}
}
}
19. Model: CYP2C19s
- Category: Metabolism
- Description: CYP 2C19-Substrate
- Method: Random Forests
- Accuracy: 0.740
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CYP2C19s",
"smiles": [
"c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3",
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CYP2C19s\",\"smiles\":[\"c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3\",\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.342,
"smiles": "c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3"
},
{
"predict": 0.69,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 0.541,
"smiles": "C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "CYP2C19s"
}
}
}
20. Model: CYP2D6i
- Category: Metabolism
- Description: CYP 2D6-Inhibitor
- Method: Random Forests
- Accuracy: 0.793
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CYP2D6i",
"smiles": [
"c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3",
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CYP2D6i\",\"smiles\":[\"c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3\",\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.42333335,
"smiles": "c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3"
},
{
"predict": 0.697,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 0.52,
"smiles": "C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "CYP2D6i"
}
}
}
21. Model: CYP2D6s
- Category: Metabolism
- Description: CYP 2D6-Substrate
- Method: Random Forests
- Accuracy: 0.748
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CYP2D6s",
"smiles": [
"c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3",
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CYP2D6s\",\"smiles\":[\"c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3\",\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.5123,
"smiles": "c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3"
},
{
"predict": 0.56516665,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 0.47883335,
"smiles": "C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "CYP2D6s"
}
}
}
22. Model: CL
- Category: Excretion
- Description: The clearance of a drug
- Method: Random Forests
- Accuracy: 0.877
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "CL",
"smiles": [
"c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3",
"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO",
"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"CL\",\"smiles\":[\"c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3\",\"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\",\"C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 1.3219831,
"smiles": "c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3"
},
{
"predict": 0.99979377,
"smiles": "O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
},
{
"predict": 0.8132012,
"smiles": "C1COc(c12)cc(Br)c(c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "CL"
}
}
}
23. Model: Ames
- Category: Toxicity
- Description: Ames test for mutagenicity
- Method: Random Forests
- Accuracy: 0.820
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "Ames",
"smiles": [
"c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3",
"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"Ames\",\"smiles\":[\"c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3\",\"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.266,
"smiles": "c1cccc(c12)[nH]c(c2)C(=O)NCCNC(=O)c3c(F)c(CO)ccc3"
},
{
"predict": 0.338,
"smiles": "O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "Ames"
}
}
}
24. Model: DILI
- Category: Toxicity
- Description: Drug-induced liver injury
- Method: Random Forests
- Accuracy: 0.840
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "DILI",
"smiles": [
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"DILI\",\"smiles\":[\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.31399998,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 0.264,
"smiles": "O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "DILI"
}
}
}
25. Model: SkinS
- Category: Toxicity
- Description: Skin Sensitivity
- Method: Random Forests
- Accuracy: 0.706
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "SkinS",
"smiles": [
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"SkinS\",\"smiles\":[\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.25,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 0.232,
"smiles": "O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "SkinS"
}
}
}
26. Model: T-HALF
- Category: Excretion
- Description: The half-life of a drug
- Method: Random Forests
- Accuracy: 0.897
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "THALF",
"smiles": [
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"THALF\",\"smiles\":[\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 1.8262397,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 1.508456,
"smiles": "O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "THALF"
}
}
}
27. Model: hERG
- Category: Toxicity
- Description: The human ether-a-go-go related gene
- Method: Random Forests
- Accuracy: 0.844
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "hERG",
"smiles": [
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"hERG\",\"smiles\":[\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.768,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 0.576,
"smiles": "O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "hERG"
}
}
}
28. Model: H-HT
- Category: Toxicity
- Description: human hepatotoxicity
- Method: Random Forests
- Accuracy: 0.690
BODY graphql
QUERY
query ($smiles: [String!], $modelName: String)
{
admetPredict(smiles: $smiles, modelName: $modelName)
}
GRAPHQL VARIABLES
{
"modelName": "HHT",
"smiles": [
"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4",
"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
]
}
Example Request:
POST /orpheus/graphql HTTP/1.1
Host: api.wisecube.ai
Content-Type: application/json
Content-Length: 1324
{\"query\":\"query ($smiles: [String!], $modelName: String){ admetPredict(smiles: $smiles, modelName: $modelName)\\n \\n}\",\"variables\":{\"modelName\":\"HHT\",\"smiles\":[\"O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4\",\"O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO\"]}}
Example Response
{
"data": {
"admetPredict": {
"dataframe": [
{
"predict": 0.81,
"smiles": "O1COc(c12)ccc(c2)NC(=O)C(=O)NCCc(c3)ccc(c34)N(C)CCC4"
},
{
"predict": 0.828,
"smiles": "O1COc(c12)cc(c(C#N)c2)NC(=O)C(=O)NCc(c3)ccc(c34)N(C)CC(C4)CO"
}
],
"modelName": "HHT"
}
}
}